Transition from ISPyB to DRAC at ESRF (IV)

Alex DE MARIA
On behalf of
Software Group and Structural Biology group
DLS 17/11/2025

ISPyB

Information System for Protein crystallography Beamlines

Motivation

Overcome DB limitations Reduce DB complexity Modular Scalable FAIRness (i.e: DOI)

Data policy (i.e : embargo, sharing data)

Support non-SB techniques with rich metadata

Steps

A proposal for a Next Generation of ISPyB Software

• Requested further evaluation and testing of the ICAT-based solution

March 2023

ISPyB/MXCuBE Collaboration Meeting SOLEIL

Nov 2023

MX on ICAT

Requested further development and deployment in real conditions

ISPyB/MXCuBE Collaboration Meeting ALBA

May 2024

Transition from ISPyB to ICAT at ESRF

- Shipment, sample tracking
- Ingestion of RAW and PROCESSED data from Beamlines

ISPyB/MXCuBE Collaboration Meeting MAXIV

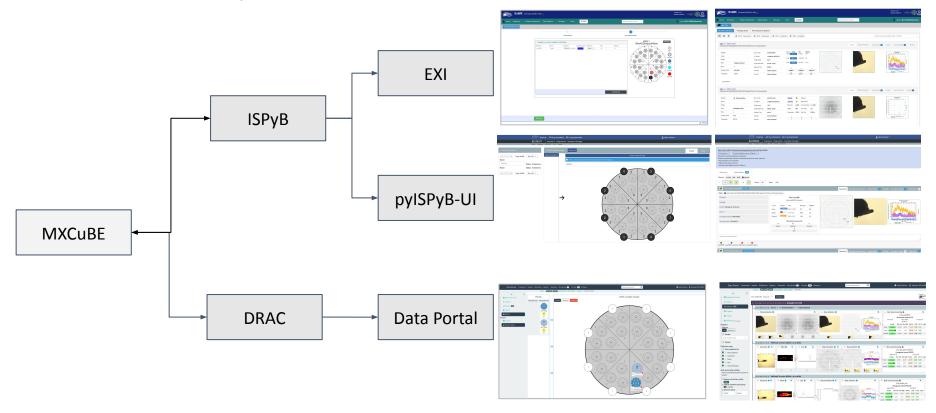
Nov 2024

Transition from ISPyB to ICAT at ESRF (II)

- DRAC was born
- Oath2 (SSO) implemented on MXCuBE and session selection

ISPyB/MXCuBE Collaboration Meeting ELETTRA

May 2025


Transition from ISPyB to DRAC at ESRF (III)

Dual synchronization of samples from MXCuBE

ISPyB/MXCuBE Collaboration Meeting DESY

Current status (November 2025)

Versions: backend | database & frontend?

Work on improving the configuration of the experiment

Experiment Plan

Min .Rot. Angle
Tot. Rot. Angle
Initial Resolution
Mesh beam diameter
Collection beam diameter
Radiation sensitivity
Number of positions
etc...

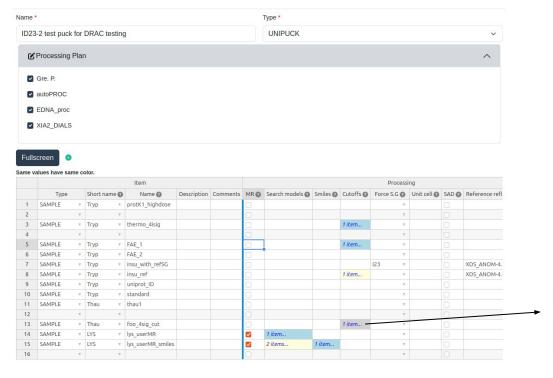
Processing Plan

Pipelines

Grenades
AutoPROC
EDNA_proc
XIA2_DIALS

Run Molecular Replacement Search models/UniProt IDs

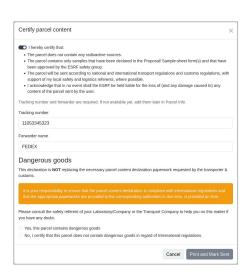
Smiles Cutoffs


Force Space group

SAD

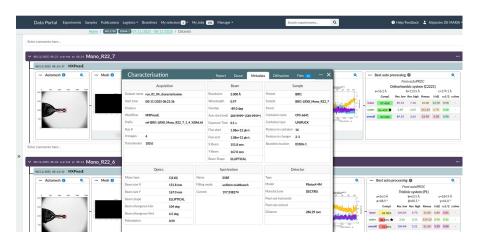
Reference reflection

- Users can configure the acquisition and processing parameters on a per-sample basis
- Spreadsheet integrated in DRAC
- Support for import/export CSV (currently still working on this)
- Configurable for each beamline (support of multiple techniques)

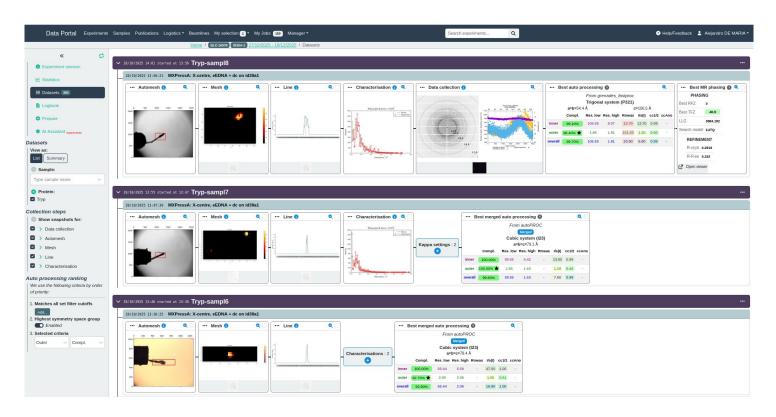

Work on improving the configuration of the experiment

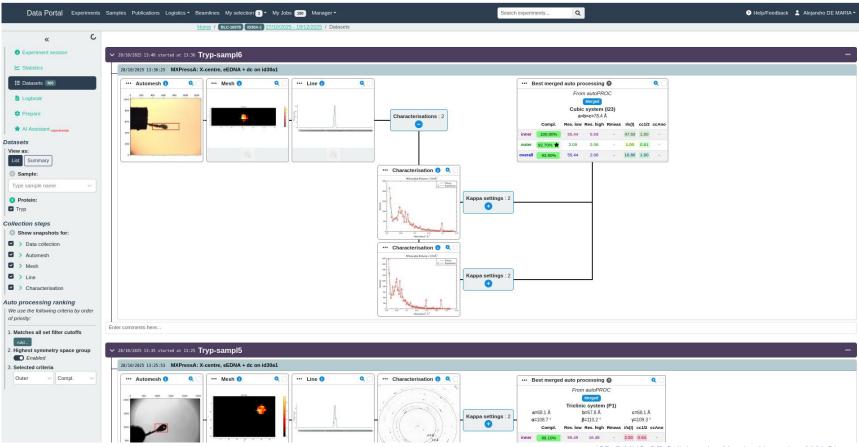
	Parameter	Value
1	Completeness	6
2	Vs() v	9.5
3	· · · · · · · · · · · · · · · · · · ·	
4	Y	
5	· · · · · · · · · · · · · · · · · · ·	
6	· · · · · · · · · · · · · · · · · · ·	
7	,	
8	· · · · · · · · · · · · · · · · · · ·	
9	γ	
10	¥	

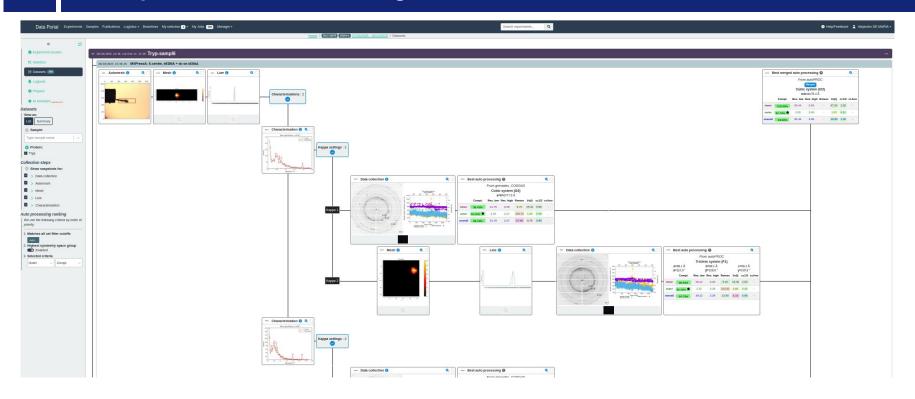
Work on improving the parcel tracking


- Improved workflow with the support of the user office and stores
- New labels

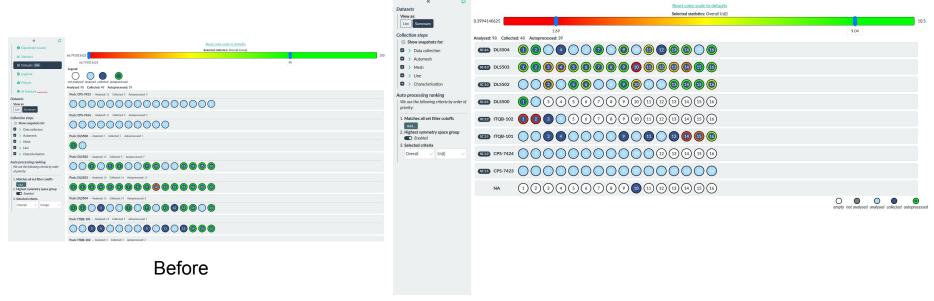


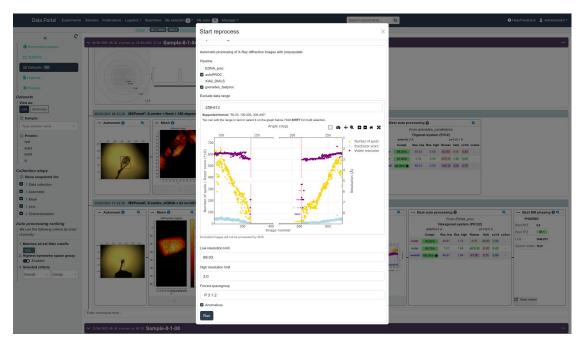



Enrichment of the metadata linked to the experiments



Real cases of dynamic grouping of the results

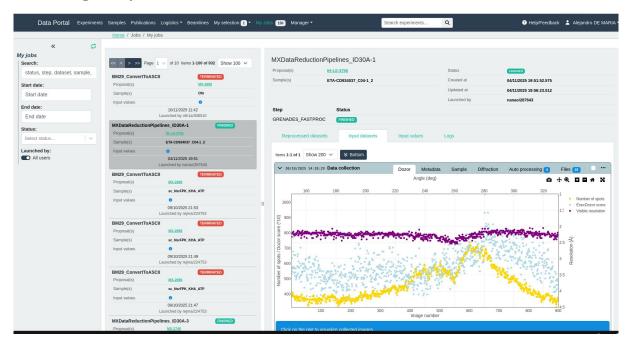




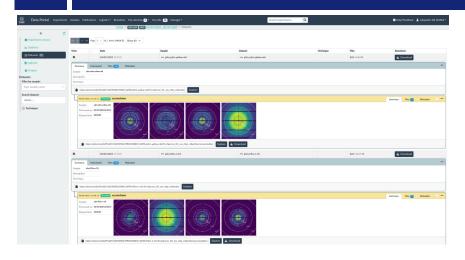
Better summary view

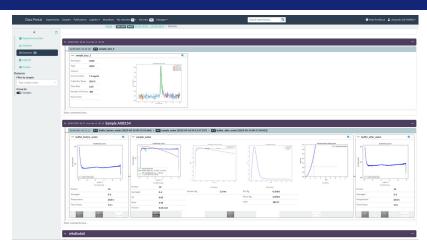
- Display of collected and uncollected positions
- Non declared containers

Reprocessing improvements


- Reprocess your dataset via ewoks
- Range image selector
- Specify more parameters, i.e: resolution limits and space group

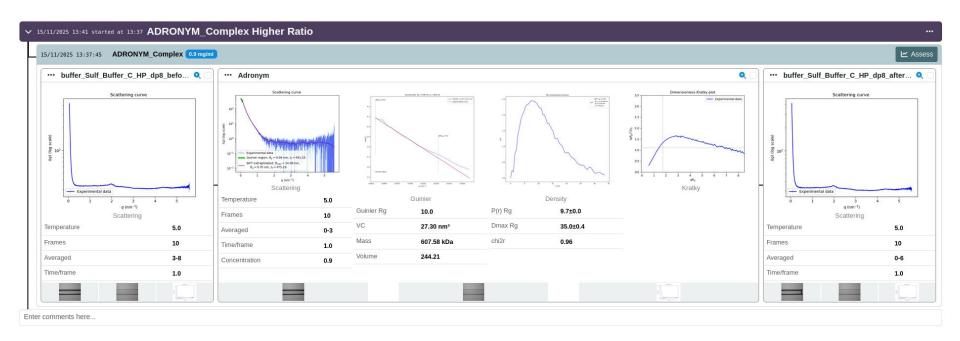
Reprocessing improvements


Upload your dataset to the CCP4 Cloud automatically via Ewoks


Reprocessing improvements

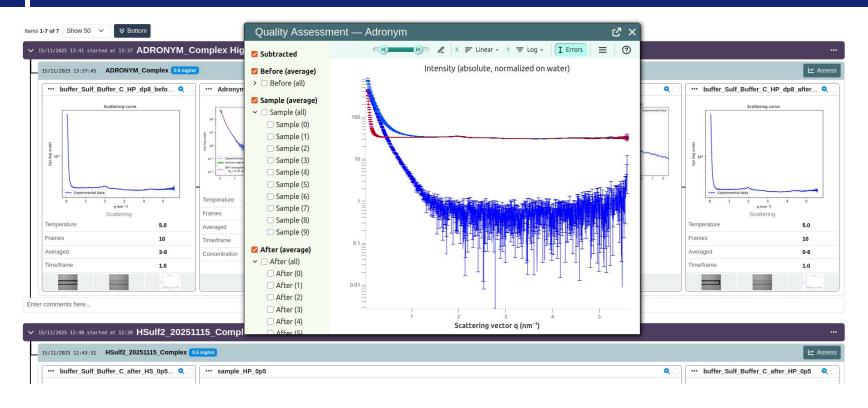
• Better interface to manage the jobs that have been run

Developments on other techniques

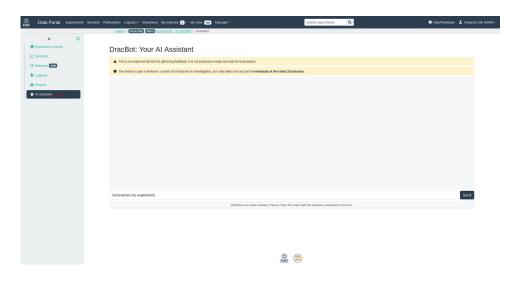


SSX Experiments

BioSAXS Experiments


- DRAC allows to change the presentation depending on the type of experiment
- As we catalog the metadata of new techniques, the data are presented appropriately.

Developments on other techniques


- Visualization widgets have been developed and integrated for certain techniques
- Example: New feature for quick assessment of the data

Developments on other techniques

Integration of H5web plugin for BioSAXS

DRACBot: Al Assistant

POC

- A proof of concept deployed on 16th Oct
- Accessible to ESRF beamline staff only

RAG (Retrieval Augmented Generation)

- Limited context send to the LLM
 - Metadata of latest datasets
- LLM: gpt-oss

Evaluation purposes only

- Gather feedback
- Inspiration about use cases

DRACBot: Example of "summarize my experiment"

Data-quality Summary (representative values)

Metric Typical range across runs

Overall completeness 7 % – 15 % (most runs 12-15 %)

Overall ($I/\sigma(I)$) 0.8 – 2.5 (inner shells often much higher, up to ~40 for the best runs)

Overall CC1/2 0.96 - 0.998 (inner shells often > 0.99)

Overall R_merge 0 - 30 % (many runs report 0, a few high values up to ~95 % for low-resolution shells)

Overall R_meas 0 - 65 % (some anomalously large negative values indicate statistical noise in very low-count data)

Overall R pim 0 - 27 % (most ≤ 12 %)

Overall multiplicity 1.0 - 1.3 (generally low, as expected for single-crystal mesh scans)

Resolution limits High-resolution shell typically 1.63 – 1.66 Å; low-resolution cut-off varies from ~18 Å to > 40 Å depending on crystal quality.

Anomalous signal Generally absent (overall anomalous multiplicity ≈ 0, anomalous completeness ≈ 0 – 0.3 %).

Note: Many parameters are reported as **0** for outer shells (e.g., R_merge, R_meas) because the corresponding reflections are either absent or have intensities below the detection threshold.

Key Observations

- Consistent crystal lattice All processed sub-datasets share nearly identical unit-cell dimensions, confirming that the same crystal (or identical crystals)
 were used throughout the mesh-and-collect experiment.
- 2. High inner-shell data quality The inner resolution shells routinely show very high (l/σ(I)) (up to ~40) and CC½ > 0.99, indicating that the diffraction spots are strong and well measured.
- 3. Low overall completeness Because each mesh-and-collect sub-dataset only samples a small portion of reciprocal space, overall completeness per sub-dataset is modest (7-15 %). The full experiment (combining all sub-datasets) would be expected to reach a much higher completeness.
- 4. Resolution The majority of runs reach a high-resolution limit of ~1.64 Å, sufficient for detailed atomic modelling of insulin and lysozyme.
- 5. Anomalous signal No significant anomalous signal was detected, which is typical for native protein crystals without heavy-atom derivatization.
- Processing consistency All datasets were processed with the same pipeline (grenades_fastproc → pyicat-plus_v0.9.1) on ESRF HPC resources, ensuring comparable statistical treatment.

Conclusion

The mesh-and-collect experiment on the ID23-2 beamline generated a large set of high-resolution diffraction sub-datasets from insulin/lysozyme microcrystals. While each individual sub-dataset has limited completeness, the data quality within the measured resolution shells is excellent (high CC½, strong I/\(\sigma(1)\), and low R merge/R meas). When merged, these data should provide a robust structural model of the target proteins at ~1.6 Å resolution.

All information extracted from the dataset metadata supplied (27 re-processed integration datasets, IDs 2260453301 – 2260552388).

DRACBot: Utils

write a list of scp command lines that copies the data to demariaa@myhome:/data for the crystals that are not diffracting or resolution between 2 and 3 amstrongs

SCP commands for the datasets that show little or no diffraction (overall $I/\sigma(I) < 1$)

- $scp r / data/visitor/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco 78_2/rco 78_2/rco 78_2/run_01_MeshAnd Collect/run_01_68_data collection/illiam (a) and a collection of the collection o$
- scp -r /data/visitor/ihls3744/id23eh2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_74_datacollection/;
- scp -r /data/visitor/ihls3744/id23eh2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_135_datacollection.
- scp -r /data/visitor/ihls3744/id23eh2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_59_datacollection/i
- $scp r / data / visitor / ihls 3744 / id 23eh 2 / 2025 1001 / PROCESSED_DATA / rco 78 _ 2 / rco 78 _ 2 / rco 78 _ 2 / run _ 01 _ Mesh And Collect / run _ 01 _ 56 _ data collection / it is a factor of the contraction of$
- $scp r / data/visitor/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2-run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2-rco78_2/run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2/run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2/run_01_MeshAndCollect/run_01_88_datacollection/ihls 3744/id 23eh 2/20251001/PROCESSED_DATA/rco78_2/rco78_2/run_01_MeshAndCollect/run_01$

Type your message...

Send

DRACbot can make mistakes. Please check the output with the beamline scientist(s) to be sure.

Plans for the next six months

Final phase of replacing ISPyB with DRAC

From October 2025

- users are encouraged to use DRAC
- ISPyB expected as main LIMS

From January 2026

- Users are **requested** to use DRAC
- ISPyB can still be used (grace period)

From March 2026

- ISPyB can not be used for shipments
 - Ingestion of data will be stopped before end of 2026

Plans for the next six months

Strengthen Collaboration

EMBL:

Helping on the installation of DRAC software ecosystem in EMBL -HH Helping on the development of the CRIMS-API

LNLS:

Work in progress adopting DRAC Customization of sample tracking Credits: Allan Pinto

SESAME:

DRAC was adopted few years ago

ALBA:

DRAC was adopted few years ago ESRF is interested in adopting/collaborating with their new ingestion software

Work on improving the downloading of public data

"Pubic data" not really accessible (to me)? Issue reported by Clemens 22/5/2025

- Restored data were not visible on Globus
- Prefers tar.gz files to zip because more robust
- (ESRF) PDB entries cite DOI for all data in session + not data only used for the reconstruction
- Globus is not an option for everyone needs a login, would like a simple solution via command line

Ongoing improvements

- Inform and follow-up with users to create bespoke DOIs with only data used in the reconstruction and cite the raw data DOIs in PDB
- Provide a command line tool to download data in one command (aria2)
- 3. Automatically copy data to open area for Globus users
- Implement restore request for data referenced in DOI directly in the data portal
- What works restored open data can be downloaded with https if < 2GB and with Globus if requested (to be sure data are copied to the open area)
- Why the problem(s) (1) we have a new archiving system which has slowed down the implementation of the improvements; (2) we need to train users to create bespoke DOIs and this takes time
- A big thank you to Clemens for testing and providing detailed feedback!
- Our goal remains FAIR data easily accessible to everyone!

Acknowledges

- Data Automation Unit
 - Marjolaine Bodin
 - Olof Svensson
 - Ludovic Broche
 - Axel Bocciarelli
- Scientists
 - Estelle Mossou
 - Didier Nurizzo
 - Matthew Bowler
 - Romain Talon
 - Andrew McCarthy

- MXCuBE
 - Marcus Oscarsson
 - Antonia Beteva
 - Yan Walesch

- Steering
 - Max Nanao
 - Andy Gotz
 - Vicente Rey